
MP4 Overview Session

CS 240 - The University of Illinois
Eunice Zhou
February 21, 2022

Goals
In this MP, you will:

● learn about multithreaded programming in C
● create thread-safe data structure using mutex,

condition variable, etc.
● implement a wallet structure that holds resources

Multithreading

Thread
A thread is a single sequential flow of control within a program

A program can have multiple threads running concurrently

Implement wallet

👛

In this MP, you will create a wallet data structure that will be
accessed by multiple threads at the same time

Thread 1:

1. Add 10 🍎
2. Sub 5 ☘
3. Sub 2 💫

Thread 2:

1. Add 7 ☘
2. Sub 10 💫
3. Add 1 ✨

Synchronization
Threads should be synchronized to avoid critical resource
use conflicts

Race conditions happen when an operation touches a piece
of shared memory at the same time as another thread

Critical section: a section of code that can only be executed
by one thread at a time if the program is to function correctly.

Race Condition
A wallet 👛 contains 10 ☘

Thread 1 Thread 2

access ☘ (= 10) access ☘ (= 10)

☘ += 5 (10 + 5 = 15)

☘ += 10 (10 + 10 = 20)

☘ = 20

☘ should be 25! (10 + 10 + 5)

Mutex
Ensure only one thread is inside the critical section at one time

● pthread_mutex_init - create a new mutex in the “unlocked”
state

● pthread_mutex_lock - lock the mutex; if the mutex is already
locked by another thread, block execution until the mutex is
unlocked

● pthread_mutex_unlock - unlock the mutex
● pthread_mutex_destroy - destroy the mutex

Wallet resource
A user will interact with your wallet by adding/subtracting
resources to/from it

You must not allow the wallet to ever go negative. The function
must wait until there are enough resources to subtract from

👛Thread 1:

Sub 50 ✨
(contain 10 ✨)

❌
Blocked!

Wallet resource
A user will interact with your wallet by adding/subtracting
resources to/from it

You must not allow the wallet to ever go negative. The function
must wait until there are enough resources to subtract from

👛Thread 1:

Sub 50 ✨
(contain 10 ✨)

❌
Blocked!

Thread 2:

Add 100 ✨
✔

Proceed

Wallet resource
A user will interact with your wallet by adding/subtracting
resources to/from it

You must not allow the wallet to ever go negative. The function
must wait until there are enough resources to subtract from

👛Thread 1:

Sub 50 ✨
(contain 110 ✨)

✔
Proceed

Avoid Busy Waiting
A naive approach: repeatedly check if the condition is
satisfied in a loop before proceeding with its execution

It is considered bad practice because

1. errors may occur due to race conditions
2. system resources are wasted

Condition Variable
Condition variables allow a set of threads to sleep until woken
up

● pthread_cond_init - create a new condition variable
● pthread_cond_wait - release mutex and cause the calling

thread to block on the condition variable
● pthread_cond_signal - unblock at least one thread that is

blocked on the condition variable

Condition Variable
Condition variables allow a set of threads to sleep until woken
up

● pthread_cond_broadcast - unblock all threads that are
blocked on the condition variable

● pthread_cond_destroy - destroy the condition variable

Spurious Wakeup
Occasionally, a waiting thread may appear to wake up for no
reason. This is called a spurious wakeup.

It usually happens due to race condition, where another thread
changes the condition before the waiting thread finally runs

// mutex is locked
...
while(condition not met)
{

pthread_cond_wait();
}
// condition is met

You want to call pthread_cond_wait
on the thread again if that happens

Resource Manager

structs in wallet
In your lib/wallet.h:

● wallet_t - maintain the state of a wallet
● wallet_resource - represent the resource in a wallet

Add any additional variable you may need

Example 👛: 10 ☘ → 2 💎 → 1 🧰

functions in wallet
Implement these functions in lib/wallet.c:

● wallet_init - initialize the wallet
○ the wallet starts out empty, with 0 of all resources

● wallet_get - return the amount of a given resource
○ ensure accesses to your wallet are properly

synchronized

functions in wallet
Implement these functions in lib/wallet.c:

● wallet_change_resource - change the amount of a
resource by a certain delta
○ the resource amount cannot go negative
○ must wait until the request can be satisfied (e.g.

another thread add to the resource)
● wallet_destroy - destroy a wallet and free any memory

associated with it

Question

